

Roy F. Weston, Inc. GSA Raritan Depot Building 209 Annex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 908-321-4200 • Fax 908-494-4021 150313

DATE:	Aug 21, 1995
TO:	WAM: S. BURCHETTE
FROM:	Y. Lin, REAC Organic Lab Group Leader Affilia
SUBJEC	Someway (NAN) 174
Attached	I please find the preliminary results of the above referenced project for the following samples:
Chain(s)	of Custody No.: 10280, 10282, 10285
Analyse:	VOC + MEK
No. of S	iamples: 24
Matrix:	AIR
	CARBON Tube Results
cc:	Y. Lin Central File B. Lewan Task Leader: Analyst: M. METZ J. SYSLO

Narrative: Spectrum Galaxy Site-0134 ERT GC/MS Method 1500, 1501, 1003

with Methyl Ethyl Ketone

Between 8/7/95 and 8/10/95 REAC received a total of 24 carbon tube air samples from the Spectrum Galaxy Site for air analysis. The samples were analyzed using the HP5995 Mass_Spec and standard GC/MS modified NIOSH carbon tube method.

The WAM had requested an additional compound, methyl ethyl ketone to be included in this analysis. Once it was determined that the compound could be detected using the current analytical column, and temperature program, the compound was spiked on the carbon tubes, and desorption efficiencies obtained. A calibration range was also constructed for this compound using the same levels of the normal VOC compounds. The data files were quantitated for the normal VOC compounds, and then for MEK only. There is another compound, benzonitrile in the ID file for MEK, but this is for another project, and should be ignored.

There was no MEK found in any samples, nor any significant levels of target compounds.

There were two lot blanks, and two field blanks provided. When a lot blank was not provided, the lab extracted one and included it with the data. Three MS/MSD pairs was extracted and analyzed; one with each chain of custody. If one was not provided, a lab lot blank was spiked and extracted. Two of the MS/MSD pairs were spiked with MEK, with results between 40 to 89 % recovery.

Samples and blanks contained small levels of toluene in both the front and backs of the tubes. This was considered lab contamination. The toluene was subtracted out using the lot blanks as a reference.

The TIC reports did not contain any compounds except for sample 01595 120 Providence Road. The TIC report showed a small amount of a Pinene compound (~6 ppb in air), and the target list showed some D- Limonene.

All samples were clean except for the small amounts of toluene which is probably lab contamination. Some samples contained small levels of 1,1,1-trichloroethane and some xylenes.

All samples were analyzed under the normal a 24 hour clock used for this analysis.

Compound Hains 1,1,1 — Yistieresture Cydehemme Carbert Tetracitatio	Cane, U U	ю.	Carre.		47%		479		-		498		440		476		
Cyclehomyne Carb et Totac Hedde	U	4.8	Ç-MIN-	MCL,	Cana	MO.	Cares	. MCT	Come	MOL	Cont.	MCL.	Cane	MCS.	Cens	MGL.	_
Carbon Tetrachladdo	=	10	Ų	16	U	4	Ų	3.0	u	3.0	บ	3.9	U	3.8	Ų	4.0	
		2.4	Ų	8.4	ນ	5.7	U	5,7	U	5.7	¥	5.7	U	5.7	U	1.6	
	Ų	11	Ų	11	U	3.8	U	3.7	u	17	IJ	3.7	U	IJ	U	1.8	
	ช	2.5	ช	9,5	U	4.3	U	1.2	Ùυ	4.2	U	4.2	u	L2	Ü	1.3	
) delimento	U	19	U	16	U	4.4	บ	6.4	U	£3	U	4.3	U	13	U	4.5	
-Hoters	U	2.9	ŭ	1.9	U	5.1	U	5,1	U	5.1	u	5.1	U	5.1	บ	5.2	
2-OcMogrepare	U	18	ប	16	ช	4.0	U	4.6	u	4.6	Ü	4.6	บ	4	u	C7	
richier methern	ប	15	ប	2.5	u	1.7	υ	1.7	Ų	17	U	1.7	บ	IJ	u	18	
,4~Cemne	ប	15	ប	15	υ	9.1	U	9.0	U	9.6	u	9.0	U	4.0	u	0.1	
folinytepai ahassara	ช	1.7	U	2.7	U	5.1	u	£S	υ	5.0	บ	5.0	u	5,0	ŭ	1,1	
Årfrylla absåyllaytarna	U	38	ช	38	υ	13	U	12	υ	13	U	13	Ü	13	u	14	
duena	Ü	10	Ü	18	21 4	5.8	174	K.Z	1.83	1.7	1.43	£.7	1.23	5.7	153	5.6	
-Odine	Ü	10	ช	10	U	4.7	U	4.6	U	4.6	U	4.6	u	u	υ	4.7	
etratiersetiers	u	18	Ü	10	U	11	U	2.1	Ü	3.1	ū	3.1	บ	3.1	Ü	14	
Zijerabaran re	Ü	11	ŧ	11	U	5.1	U	6.1	Ü	5.0	u	5.0	. Ur	1.0	Ü	5,1	
Trybersane	ŭ	te	บ	16	ย	4.9	IJ	4.9	U	4.9	u	4.0	U	4	U	10	
era-Xylano	U	10	U	10	Ü	5.1	U	5.1	ű	5.8	U	5.0	Ü	5.0	U	S.I	
r englem	บ	18	u	18	U	1.7	Ü	3.6	U	16	Ü	16	ŭ	3.6	u	3.7	
Reno	บ	 >⇒	ช	39	บ	18	u	10	ü	19	Ů.	19	Ü	19	Ü	19	
rine-Xdens	r.	11	ช	11	u	5.4	u	1.3	Ü	5.3	u	63	ü	13	น	5.4	
-Necessa	u	38	ដ	11	Ü	45	ŭ	4.4	u	4.4	u	4.4	u u	44	נו	4.6	
-Nerano	u	10	U	16	ย	42	U	4.2	. U	4.2	u	4.2	u	4.2	u	43	
i-reason .1.22-Tetrahler auther	_	12	ប	12	บ	1.1	U	1.1	. u	3.0	u u	3.8	ט	u	u	13	
• • •	ים אה		บ	24	.u	4.0	u	4.9	U	4.0	u	4.0	u		บ	40	
Comerce Assert		1.4 1.7	ช	2.7	Ü	4.2	U	4.9	u	4.1	U	4.1	u	48	U U	42	
Analtyte mp	_		ŭ.	18	IJ	7.7	บ	7.6	U	7.8	. 0		U		_	7.7	
pin-miliphus	g 	18	ų U	11	U U	3.6	U	1.8	u u	3.8	บ	7,6 3.8	u	7.0	U	1.7	
1,5-Oatterboreano	U	11	u	12	U	4.8	t t	4.0	u	4.0	u		U	3.8	u u		
f,4-Ochlenboremo	V U	12	ט	12	U	4.3	U	4.3	u	4.0	U	4.9	U	4.0	u	41	
t,2-Ochierane	-	12	ບ		u	12	บ	12	U	12	u		ซ	4.5	-	4.3	
Bencyl Chlesie	U U	38	U	39 44	Ü	17	u u	17	ช	16	υ	12 16	ŋ	1.2	U U	1± 17	4
alpha—Terpinene	บ	11	U	11	u	4.0	ü	40	ีย	3.9	U	1.0	U	19	u	4.0	
D-Umerane	. u	11 8.2	ט	11	u	12	ű	12	U	1.1	ü	3.1	ย	2.5	ų u	12	
4-tert-Sutylaivere			ย	14	U	4.0	u	4.0	ย	4.0	u	4.0	v	4.9	u	41	
1.2.4—Tietierobereune	U	14 33	. u	53	U	25	บ	21	. u	23	ช	21	u u	23	u	21	
Kaphtalane "			•		u	11	נו	3.2		12		3.2	U	2 12	ย	33	
(Thenylcynichemme	U	10	U	19	u	17	U	3.7	U		u		U		. U		
п-Сини пи	U	te	U	10	_		•		•	3.7	_	17	-	1.7	-	28	
n-Decare	U	u	U	8.8	Ü	3.8	Ų	3.5	ឋ	15	u	3.5	U	3.5	U	1.6	
n-Unicesno	U	2.7	Ű	9.7	Ų	73	U	12	υ	3.2	U	1.2	U	14	U	1.5	
n-Undermo	U	2.3	บ	9.8	U	1.3	Ŭ	1.2	ข	1.2	Ų	73	U	12	U	13	
n-Herstud	ช	€7	, U	47	U	17	U	17	บ	17	u	. 17	U	17	u	17	
n-Cedecane	ប	10	U	. 10	U	3,6	U	1.0	U	3.0	Ų	70	U	39	U	11	
mesebal-n	ช	19	U	10	υ	23	υ	28	U	2.9	U	2.0	U	2.9	u	2,9	
n-Tatadecare	U	10	U	19	บ	27	· U	2.7	U	27	U	2.5	U	2.7	U	27	
n-formacina	ט	35	U	11	U	28	U	2.0	U	2.5	U	28	U	2.6	. u	2.5	
DHomelesene	น	15	u	11	u	24	U	24	U	24	U	2.4	ម	2,4	U	25	

bangkollin. Lampiting Lovedber Labore (L.)	NESCE Let Stands G	-	venus Talp Blands B	-	02106 25 UBo B2:0 300	Creak Pol.	6(768 (34 %) Mass (380	n AL	02'167 1116 GL 26'46 2004.8	le.	20700 1605 Q. RM 370	iA4	120 Provide 130 Provide 340	PL	mante Visit in a data and	-	120 Strongen en St. Staget	4 Belon
Acres Marro	comet	MOL.	Corns.	MOL	Comm.	MOL	Comm.	WOL	Comm.	SOL	Comm	WDL	Çema,	M34,	C+=E		Comme	HOL,
1,1 - Metamotuma	U	7.0	U	16	Ų	L1	U	_ 4	Ų	IJ	U	IJ	υ	LE	721	IJ	u '	2.0
y dołu suto	U	1.4	u	8.4	U	7.0	u	7.8	U	7.6	u	7.8	U	7.8	U	7.0	Ų	78
arbon Totrastánido	U	19	U	11	¥	49	¥	44	v	6.6	u	Le	U	4.0	U	u	U	2.5
	Ų	2.5	บ	. 1.5	ų	1.3	IJ	1.3	u	1.3	u	8.5	U	4.3	u	u	U	4.1
y dolo meto	U	10	u	14	U	Li	U	4.5	U	14	U	u	u	44	U	4	U	42
-Hopture	U	1.0	U	44	Ų	e.	U	U	U	4.5	Ų	4	¥	U	¥	4.8	U	14
A-Cintorpropose	u	10	U	10	u	6.1	υ	6.1	U	£1	U	4.5	U	L	u	6.1	น	3,0
dations turn	U	0.5	U	0.5	u	4.0	บ	4.9	U	4	u	4.9	Ų	•	u	4	U	2.5
4-Cleans	u '	16	U	15	u	12	U	12	U	12	U	12	U	12	U	12	v	L
والمساوات أوالم	υ	1.7	u_		IJ	47	¥	4.7	U	U	U	4	ម	4.7	υ	4.8	U	1.4
	U	*	/4		U	18	U	18	u	18	U	18	u	16	U	10	u	ш
inne	17	10	(*0	24 X 10	est	7.8	275	7.8	Car J	7.4	U	7,6	U	7.6	1.7 J	7.4	MJ.	34
-O edges	U	16	\ u^2	2 1	Ų	12	¥	4.5	U	4.8	u	C.	Ų	u	U	ч	U	11
de discontinue	U	10	ė.	· /w	Ü	41	U	4.5	U	4.1	u	44	u	41	¥	4.2	u	21
Serapana para	່ ບ	t1	ຶ່		T u	Ü	· 🛈	u `	U	Ű	v	4.3	u	U	U	4	u	1
tydor um o	U	10	u	10	u	45	u	4.6	Ų	4.5	IJ	6.5	¥	4.5	U	u	u	3.4
era-Xidona	υ	10	U	10	u	4.7	U	4.7	u	4.7	u	4.5	u	e.	Las J	4	9.30g J*	1
remains in	บ	18	U	18	U	4.0	Ü	4.6	U	4.0	u	4.9	U	4.6	u		U	Ł
property.	ย	39	u		υ	=	U	=	ט	=	ย	=	บ	-	υ	=	U	t
Sus - Xydaria	ď	11	Ú	11	Ü	7.1	U	7.1	U	7.3	U	7.1	Ü	7.3	U	7.1	u	1
-Necess	ti	11	U	11	u	1.0	U	6.0	U	1.0	U	L)	บ	4.0	U	u	u	
None	U	10	U	10	U	1.5	u	4.5	U	5.0	IJ	1.5	U	1.5	U	L	U	2
1,2,5—Tobacklers elbers	Ü	3 2	U	12	Ú	5.0	IJ	5.0	u	5.0	v	C.	Ü	1.0	U	8.1	U	1
	U	8.4	U	2.4	U	13	U	6.3		1.5	U	13	ย	43	u	8.3	U	1
bellyfens	ū	6.7	u	9.7	ū	4.6	U	1.5	¥	4.5	U	13	U	1.5	U		U	1
ala — medini shrore	U	18	t	ta	Ü	19	U	16	u	10	Ŀ	18	u	10	Ð	10	u	L.
3-Cintions	ü	11	Ü	tt	Ü	u	Ü	L	Ü	1.0	Ü		U	- 44	Ü	4	u	2
AChall entherstee		12	u	12	u.		U	1.5	U	6.6	Ü	u		u	Ü	5.4	U	
2-Olaffersbenzete		12	Ü	12	ŭ	ม	Ū	ม	Ū	IJ	Ü	U	Ü	U	ŭ	U	Ü	ž
encyl CN settle	Ü	*	U			16	u	16	u	10	u	14	ŭ	16	ŭ	18	u	,
ipte – Terpeuno ·	ű	-	ŭ	- 4	u	=	Ü	*	U	*	ŭ	=	Ü	=	Ü		v	,
) (imenute) (imenute	ŭ	11	Ü	11	Ü	_ !!	u	u	u		u	13	u	- 45	u		Ů	1
url-SulyBokano	ű	1.2	Ü	8.2	ŭ	44	U	4	Ü	4.8	Ü	- 4	u	43	Ü	4	ū	•
24-Triddenturans	u	14	u	14	ŭ	<u>.</u>	Ü	13	Ü	4	Ü	14	. υ	u	U		Ü	•
	ū	8	Ü	13	ŭ	-	v	-	Ü	-	บ		Ü	-	Ŭ		u	•
	u	10	u	10	u		u	د	u u	4.3	Ū		Ü	4.3	U	4	Ü	:
-Deceses	ű	19	u	10	Ü		Ü	4.9	u	4.9	Ü	S.o	Ü	49	¥	u	Ü	;
-Decemb		8.4	Ü	8.8	u	47	Ū	47	ŭ	4.7	u	47	u	47	บ	47	ŭ	;
	Ü	1.7	บ	8.7		4	Ü	43	u	4.3	U	4	u		ŭ	٠.	ū	•
-Urde erro	Ü	E.F	u.	. 13	Ü	45	. u	45	ū.	43	U	43	Ü	45	ŭ	44	Ü	,
	U	47	u.		u	=	U	*	ŭ	*	U		Ü		u	=	ū	
Codesars	Ü	10	บ	10	v		u	4.6	ū	4.0	v	-	Ű	4	ŭ	. <u>.</u>	Ü	
-Trickers	u	10	Ü	10	. ù	3.9	u	11	u	3.5	ű	15	ű	10	u u	. u	ü	
	u	18	u	10		15	Ü	3.5	u	14	u	14	u	u	u	3.6	u	
– Tathidosalla – Parlindosalla	Ü	11	u	10	U	24	u	3.4	U	14	บ	34	U	3.4	-	3.6 3.4	u	
	_		-		_		_		Ü		13							
-H erminana	U	11	Ų	11	U	12	U	3.8	U	3.2	U	12	u	3.2	U	3.2	u	

of Unit in total ug.

Lampin Me. Bamping Location Misses (L)	COC # 102	6	272 21 UBio 원k: 1 (1991	Crock Rd.	01 590£ 42,4 Ed Meer 360	♥ Ad.	01 583 1115 G. XIII 380	ML.	01 864 1025 G, XQ1x 360	REL	01 506 120 Provider 360	194 ř el,	01598 Walishig Brist 080	3 *	el 997 Providence (360	instpe
Compound Name	Canal	MOL	Cens	MCL.	Cons.	MCL	Cone	MOL	Cane	MOL	Cane,	MOL,	Cone.	MCI.	Cana	MOL
energeneralists — t, t,	U	18	บ	£t	บ	5.2	U	5.2	U	L2	U	1.2	1, 6 J	12	u	1.2
, Angelonia	U	14	U	7.3	U	7.8	u	7.8	U	7.6	¥	7.0	u	7.0	U	7.6
ara en Tetras Horide	U	11	ឋ	44	ប	4.5	U	4.0	U	4	U	4.0	U	4.8	¥	4.9
engare	U	1.5	บ	1.9	ប	LJ	ប	8.3	់ប	1.3	U	1.3	บ	L3	ប	43
)vieh-men	น	10	¥	12	ឋ	8.5	U	a.I	U	E.S	Ü	1.5	บ	LS	U	1.5
-Heptone	U	1.3	u	4.5	U	6.7	ช	4.7	U	6,7	ช	4.7	U	4.7	Ų	4.7
2-DeHeprepare	U	10	บ	2.9	U	6.1	U	6.1	u	6,1	u	4.1	U	6.1	Ü	L1
risive weren	U	8.5	Ü	4.7	IJ	4.0	u	4.9	u	4.9	U	4.9	Ų	4.9	U	4.9
,4–Gousse	U	15	U	12	ŭ	12	U	tæ	u	12	U	12	U	12	u	12
istoja piemero	U	2.7	ซ	4.5	บ	6.7	U	4.7	u	6.7	u	€.7	Ų	4.7	u	4.7
letylis abuly betane	U	36	U	17	ប	14	U	10	U	18	U	18	IJ	18	ប	18
duene	12	18	233	7.4	1.94	7.8	1,43	7.0	1.74	7.0	1.63	7.8	1,4-3"	7.6	1.34	7.6
	υ	16	u ·	6.5	u	6.2	U	6.2	U	L2	บ	1.2	U	6.2	Ų	LZ
etactoreethere	u	16	u	4.0	U	4.1	U	4.1	U	41	U	41	_ U	4.1	U	4,1
Triangeres re	u	11	ប	LS.	U	4.7	U	£7	U	4.7	u	6.7	Ű	6.7	ប	4.7
In Decipine	u	10	U	u	U	4.5	U	u	U.	e.	u	4.5	U	6.5	U	C.S
era-Xylene	u	10	U	4.5	U	6.7	ช	67	U	4.7	u	6,7	ย	4.7	บ	6.7
remeista	u	18	U	4.7	U	4.5	Ų	4.8	U	4.8	บ	4.0	Ü	4.0	Ü	43
Grana	U	39	U	34	ช	35	υ	34	U	25	U	25	Ü	3	IJ	3
rthe-Xylene	U	11	U	4.9	U	7.1	U	7.1	. u	7.1	Ü	7.1	บ	7.1	Ü	7.1
-Nenene	u	11	U	5.7	ย	5.3	υ	8.0	U	5.9	Ü	L	U	L	U	S.I
-Norma	u	19	υ	5.4	บ	5.5	U	5.5	U	5.5	ť	\$.5	U	5.5	U	5.5
.1.2.2~Tet autier setier	ns U	12	U	49	U	5.0	U	5.0	່ ບ	5.0	U	5.0	ย	50	ย	5.0
Limera	. ບ	24	ប	5. 1	U	5.3	Ų	6.3	u	5.3	Ü	1.3	U	5.3	IJ	1.1
Analigia ma	u	1.7	บ	5.3	u	3.6	U	5.5	U	5.6	U	LS	บ	LS	น	5.5
Din-metyhirme	u	18	Ų	14	u	10	U	19	U	19	Ú	10	u	16	U	16
,3-Dehlersberenne	u	51	บ	4.8	ช	10	ប	5.9	U	70	U	1.0	U	5.0	IJ	4,6
,4-DeNerobentero	U	12	ឋ	1.2	ម	1.3	u	5.9	• 0	5.3	u	L3	U	53	U	5.1
2-Dellerdereme	t;	12	ប	15	U	5.7	U	5.7	U	5.7	U	5.7	u	5.7	Ü	5.7
lencyl Chieride	u	35	U	15	U	16	Ü	16	U	16	Ū	18	Ü	16	u	16
spin-Terperens	u	44	Ü	2	Ų	22	Ų	22	Ü	22	Ü	222	Ü	22	Ü	21
Limenume	Ü	11	u	5.1	Ü	5.3	Ü	5.3	Ü	53	1,63	5.3	Ü	5.3	Ü	5.5
i – tert – Butyboluene	u	9.2	·u	43	Ü	4.2	U	4.2	u	42	u	4.2	u	42	ŭ	42
24-Tiehlereberenne	u	14	U	5.2	u	53	u	5.3	U	5.3	u	LI	U	13	Ü	5.1
(aphthelene	u	13	บ	¥	u	*	U	28	U	26	ŭ	28	U	2	u	24
Photpleysighesets	u	10	ับ	42	U	43	U	4.8.	υ	43	, n	4.8	Ų	43	บ	4.5
-Decemb	น	10	ŭ	4.8	U	4.9	U	4.8	Ü	49	v	4.9	Ü	4	u	4.1
-Cosane	ช	1.5	U	45	U	4.7	U	4.7	Ų	4.7	U	4.7	น	4.7	U	4.
-Undecene	ប	1.7	Ü	41	U	43	U	4.3	U	4.3	Ü	4.3	u	ü	Ü	4.5
-Undesene	u	2.3	U	Œ	U	4	U	4.3	u	4.3	U	4.8	U	4.3	Ü	4.5
-Heranal	υ	47	u	22	ช	22	U	22	U	22	U	22,	U	22	Ü	21
-Dedecane	U	18	ช	3.9	ប	4.9	u	4.0	U	4.8	Ü	4.0	u	4.0	Ü	4.0
-Tridecare	U	10	Ü	2.7	บ	3.8	U	3.5	u	1.5	บ	5.8	Ü	18	IJ	3.1
Tetadosano	บ	18	ช	2.6	Ü	1.5	Ü	3.5	บ	3.5	Ü	3.5	Ü	15	ū	3.1
Parriacios ano	บ	11	Ü	13	U	3.4	Ü	2.4	Ü	34	Ü	34	u	34	ü	1
	u	11	u	11	U	3.2	U	3.2	U	3.2	u	3.2	11	12	u	3.
Mottryl-Ettyl-Ketane	tr	17	u	18	u	16	u	:0	u	18	บ	16	บ	18	. u	14

NIOSH VOC's Analysis in Air (Carbon Tubes) WA # 0-134 Spectrum Galaxy

2187 Lot Blank		\$	pike 1	\$	pik• 2	
Parameter	Spike Added (µg)	MS Recov. (µg)	% Recovery	MSD Recov. (µg)	% Recovery	% RPD
Cyclohexane	50.0	48.5	97	44.7	89	8
1,2-Dichloropropane	50.0	428	86	39.1	78	9
Bromoform	50.0	50.1	100	50.7	101	1
Mesitylene	- 50.0	420	84	40.9	82	3
1,2,4-Trichlorobenzene	50.0	43.0	86	43.4	87	1
4-Phenylcyclohexene	50.0	41.0	82	39.5	79	4

02203 LOT BLANK		, \$	pike 1	\$	pik• 2 ∕	
Parameter	Spike Added (µg)	MS Recov. (µg)	% Recovery	MSD Recov. · (µg)	% Recovery	% RPD
yelohexane	50,0	35.8	` 72	40.5	81	12
1,2-Dichloropropane	50,0	36.0	72	39.8	80	10
Bromoform	50.0	37.0	74	37.3	75	1
Mesitylene	50.0	36.8	. 74	427	85	15
1,2,4—Trichlorobenzene	50.0	34.3	69	40.3	. 81	16
4-Phenylcyclohexene	50,0	33.6	67	39.1	78	15
Methyl-Ethyl- Ketone	50.0	40.2	80	44.5	89	10

LAB LANK		s	pike 1	S	pike 2	
Parameter	Spike Added (µg)	MS Recov. (µg)	% Recovery	MSD Recov. (µg)	% Recovery	% RPD
Cyclohexane	50.0	43.9	88	40.2	80	9
1,2-Dichloropropane Bromoform	50.0 50.0	45.1 43.1	90 86	40.8 41.2	82 82	10 4
Mesitylene	50.0	46.3	93	42.0	84	10
1,2,4-Trichlorobenzene	50.0	37.4	75	36.9	74	1
4Phenylcyclohexene MethylEthyl	50.0 50.0	424 19.9	85 40) 39.9 23.9	80 48	6 18

A:\SPEGAL\SGMDSRE.WK3

y F. Westd Inc. AC, Edison, N.J. A Contract 68-03-3482

CHAIN OF CUSTODY RECORD/LAB WORK REQUEST

Project Name: Spectaso / Garle y
Project Number: 03347040001013401
RFW Contact: M. N.C+7
Phone:

_Phone: 321-42.00

No: 10280

								-
	707		0.6621110	1 5	dewin	Str. 18	W. Warther	Hydria M.
Kr 130	To the		I de l'action de la constant de la c	Date Illine			Ву	-
ile Time	CUSTODY #	(2W)	1	H 1003, 1	Water + NITOS Water + NITOS	>0 € ∞	PW - Potable Water GW - Groundwater SW - Surface Water SL - Sludge	Sediment Drum Solids Drum Liquids Other
USE ONLY	FOR SUBCONTRACTING USE ONLY			l Instructions:	Specia			
1								
		1						
1				1				*
								1
)		/		
							$\left \frac{1}{2} \right $	
				,			/	
	· (A				*	anx anx	ממשום סכוו	88170
	01-		4			ok	(pt 15)a	02187
	704					Bridge	Walking Bridge	02186
	1801-			,		dence Rd	120 Providence Rd	02185
	1807	7			- T	mk Rd	1025 (o. Kirk Re	77184
	1801	7				A NA	1115 b. Kirk RA	102183
	478	\ \ \	Glass Jac Inave	$\frac{1}{2}$	1618 1	Deel Tool	21 Little Coper Kal	18180
	Manuall	100x	Preservative	Date Collected Bottles	×	Sampling Location		₩ Sample No.
	ANALYSES HEMUESTED		Container/	2	IFICATION	SAMPLE IDENTIFICATION	SA	56.
SHEET NOOF				Trans	RFW Contact: III A TAKE T A		A Contract 68-03-3482	A Contrac
		1		こうしょ	-			-)

items/Reason leac, Edison, N.J. PA Contract 68-03-3482 Drum Liquids Drum Solids Sediment 25.2 66175 021975 021951 10773 022cc 1 061 J.M. 02203 07707 Sample No. Relinquished By GW-- Md Chara. D TOOD BLASK Providence led Bridge 474 Fid Moore RX 21 LHIC Elklich Rd WELKING Bridge 1115 C. KNY RA 025 6, hin h Rd 20 Providence led Groundwater Surface Water Sludge Potable Water Sampling Location Blank SAMPLE IDENTIFICATION Date a 0 ≷ ∞ Project Name: 50+1×100 (91-10-161)
Project Number: 23347774 001 001 01340 HFW Contact: Ah Mata Soil Water Oll CHAIN OF CUSTODY RECORD/LAB WORK REQUEST Received By Lagar Matrix Date Collected Bottles * い165日 1603, 156011501 AN WIEW OS TEC Date Time 6/635 Tobe/None Items/Reason Container/ Preservative Hacksis .Phone: Blesser Relinquished By 700 ANALYSES REQUESTED 8/0/1 Date 720 122 LON 5500 CUSTODY # FROM CHAIN OF FOR SUBCONTRACTING USE ONLY Š Received By `, No: 10282 SHEET NO. 15 to | 25 Date 7.4 Time 1- OF 7 AR300921

4

훘 lems/Heason Yeac, Edis Andrida :PA Contract 68-03-3482 Drum Solids
Drum Liquids
Other Sediment 01591 01543 Sample No. Maryont Relinquished By 11 Cittle Blk Creking 115 6 KI-KRO 17 Ed Moore 129 OUT OF HANKEY Walking Bridge Potable Water Groundwater Surface Water Sludge Youtherne Briles 20 Providence Rd Sampling Location SAMPLE IDENTIFICATION Delectar Received By Soil Air Project Name: 50 CC TO CO Project Number: 0 53 47 040 00 RFW Contact: NAME TO Matrix Special Instructions: Date Collected 19/1/9/85 5/1/ Glass Tube/ none Hams/Reason Maches Container/ Preservative -Phone: -Dokera Relinquished By ANALYSES REQUESTED 300 360 360 360 FROM CHAIN OF CUSTODY # FOR SUBCONTRACTING USE ONLY Received By . No: 102-5 SHEET NO. ZoF Z 5h:11 55/11/8 71me

ĺ

AR300922

1

CHAIN OF CUSTODY HECOHD/LAB WOHK HEWVENT

10751